Spin-coated polyethylene films probed by single molecules.

نویسندگان

  • A C Wirtz
  • C Hofmann
  • E J J Groenen
چکیده

We have studied ultrathin spin-coated high-density polyethylene films by means of single-molecule spectroscopy and microscopy at 1.8 K. The films have been doped with 2.3,8.9-dibenzanthanthrene (DBATT) molecules, which function as local reporters of their immediate environment. The orientation distributions of single DBATT probe molecules in 100-200 nm thin films of high-density polyethylene differ markedly from those in low-density films. We have found a preferential orientation of dopant molecules along two well-defined, mutually perpendicular directions. These directions are preserved over at least a 2 mm distance. The strong orientation preference of the probe molecules requires the presence of abundant lateral crystal faces and is therefore not consistent with a spherulitic morphology. Instead, a "shish-kebab" crystal structure is invoked to explain our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical properties of spin-coated Er-doped Ga1As39S60 Chalcogenide thin films

Spin-coating of Chalcogenide glasses is a cost-effective and flexible method to produce thin films applicable in photonics. In this paper Er was doped into Ga1As39S60 glass by melt quenching technique and solutions for spin coating were prepared from glass powders dissolved in Propylamine and Ethylendiamine. Substrates used were microscopic slides (refractive index of about 1.51). Applied layer...

متن کامل

Inhibition of Staphylococcus aureus growth in fresh calf minced meat using low density Polyethylene films package promoted by titanium dioxide and zinc oxide nanoparticles

Antibacterial properties of TiO2, ZnO as well as mixed TiO2-ZnO nanoparticles coated low density polyethylene films on Staphylococcus aureus PTCC1112 were investigated. Bactericidal efficiency of 0.5, 1 and 2 Wt% for TiO2 and ZnO nanoparticles and also 1 Wt% mixed TiO2-ZnO nanoparticles with TiO2:ZnO ratios of 25:75, 50:50 and 75:25 were tested under UV and fluorescent lights exposure at two di...

متن کامل

Investigation on the structural, morphological and photochemical properties of spin-coated TiO2 and ZnO thin films prepared by sol-gel method

In this study, TiO2 and ZnO nanofilms were prepared by sol-gel spin-coating method. Nanofilms were characterized by X-ray Diffraction (XRD), Energy Dispersive Analysis of      X-ray (EDX), Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FE-ESM). Structural and morphological properties of nanofilms were investigated. The average crystalline size of ...

متن کامل

Investigation on the structural, morphological and photochemical properties of spin-coated TiO2 and ZnO thin films prepared by sol-gel method

In this study, TiO2 and ZnO nanofilms were prepared by sol-gel spin-coating method. Nanofilms were characterized by X-ray Diffraction (XRD), Energy Dispersive Analysis of      X-ray (EDX), Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FE-ESM). Structural and morphological properties of nanofilms were investigated. The average crystalline size of ...

متن کامل

Sol – Gel Spin Coated Cadmium Sulphide ‎Thin Films on Silicon (1 0 0) Substrates for ‎Optoelectronic Applications

Cadmium chalcogenides with appropriate band gap energy have been attracting a great deal of attention because of their potential applications in optoelectronic devices. In this work CdS thin films were deposited on p – type silicon substrates by sol – gel spin coating method at different substrate temperatures. The CdS deposited wafers were characterized by X‐ray diffracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 43  شماره 

صفحات  -

تاریخ انتشار 2006